

Indian Health Service Sanitation Facilities Construction Program Wastewater Lagoon Operation & Maintenance

http://www.dsfc.ihs.gov

By: Christen P. Glime, P.E., District Engineer Santa Fe District Office, AAO, IHS

Indian Health Service Sanitation Facilities Construction Program

Executive Branch (Federal Govt.)

Surgeon General Dr. Regina Benjamin is the Head of the

Public Health Service

Department of Health & Human Services

U.S. Public Health Service

Indian Health Service

Center for Disease Control & Prevention (CDC)

Operating Divisions / Agencies

Food & Drug Administration (FDA)

National Institutes of Health (NIH)

9 Others (13 total)

Indian Health Service Sanitation Facilities Construction Program

Albuquerque Area IHS:

Why Do We Use Lagoons for Wastewater Treatment?

- Operation and Maintenance Cost is Low
- To match technical and financial capacity of the utility

Advantages of Lagoon Systems

- Low O&M Cost
- Financial & Technical capacity required is low
- Low operator certification level (Level 1)
- •Ability to handle shock loads

Disadvantages of Lagoon Systems

- Odors
- Aesthetics
- Large land area required
- •Little control over treatment process
- Mosquitos

TYPES OF LAGOON SYSTEMS (Hydraulically):

A. Total Retention Lagoon System

B. Discharging Lagoon System

No NPDES Permit Required

NPDES Permit Required if discharging to water body

Discharging Lagoon Systems

Typical Methods of Discharge:

A: Direct discharge to river (NPDES Permit Required)

B. Discharge to percolation cell, wetland, or land application system (EPA NPDES Permit may NOT Required)

Discharging Lagoon Systems

Typical Methods Disinfection:

A: Chlorination

- B. Chlorination/Dechlorination
- C. UV Disinfection typically wastewater from lagoons isn't clear enough for UV to be effective without some type of filtration
- D. Ozone

Discharging Lagoon Systems:

Percolation Cell Design Considerations

- depth to groundwater
- Soil conditions; percolation rate
- Wastewater treatment quality prior to reaching groundwater
- Permit required? Class V Injection Well?

Discharging Lagoon Systems:

Land Application System Design Considerations

- Drip irrigation vs. spraying sprinkler irrigation
- Wastewater Quality
- Crop Selection
- Soil conditions
- Storage capacity of lagoon to get through winter months
- Limit site access; signage
- Permit required?

Table 1. Approved Uses for Reclaimed Wastewater by Class
--

Class of Reclaimed Wastewater	Approved Uses					
	All Class 1 uses. No setback limit to dwelling unit or occupied establishment.					
Class 1A	Backfill around potable water pipes					
	Irrigation of food crops ¹					
	Impoundments (recreational or ornamental)					
	Irrigation of parks, school yards, golf courses ²					
	Irrigation of urban landscaping ²					
Class 1B	Snow making					
	Street cleaning					
	Toilet flushing					
	Backfill around non-potable piping					
	Concrete mixing					
	Dust control					
	Irrigation of fodder, fiber, and seed crops for milk-producing animals					
Class 2	Irrigation of roadway median landscapes					
	Irrigation of sod farms					
	Livestock watering					
	Soil compaction					
Class 3	Irrigation of fodder, fiber, and seed crops for non-milk-producing animals					
Class J	Irrigation of forest trees (silviculture)					

NMED Policy for the Above Ground Use of Reclaimed Domestic Wastewater

	BODs	30 mg/l	45 mg/l	3-hour composite for major WWTP ⁵ ; Grab sample for minor WWTP	1 test per week for major WWTP; 1 test per month for minor WWTP
Class 3	TSS	75 mg/l	90 mg/l	3-hour composite for major WWTP; Grab sample for minor WWTP	1 test per week for major WWTP; 1 test per month for minor WWTP
	Fecal Coliform ²	1,000 organisms per 100 ml ³	5,000 organisms per 100 ml ⁴	Grab sample at peak hourly flow	1 test per week for major WWTP; 1 test per month for minor WWTP
	TRC or UV Transmissivity	Monitor Only	Monitor Only	Grab sample or reading at peak hourly flow	Record values at peak hourly flow

TYPES OF LAGOON SYSTEMS (Treatment Types):

Aerobic: typical for domestic WW (aerobic treatment)

Facultative: typical for domestic WW (aerobic & anaerobic treatment)

Anaerobic: used for high strength WW (anaerobic treatment)

- Aerobic bacteria
- > O2 demand met by aeration and photosynthesis
- > 3 − 5 feet deep
- > 35 100 lbs BOD/acre surface area/day

- Anaerobic bacteria
- Water surface covered (no sunlight or O₂)
- > 8 − 16 feet deep
- ▶ 175 450 lbs BOD/acre surface area/day

Aerobic Lagoon Systems:

- Makes treatment more efficient than facultative
- Can decrease the footprint of the system vs. facultative
- typically discharge
- Try to keep minimum [DO] ≥ 2 mg/L
- Fine bubble aerators and surface aspirating aerators are most common in lagoon systems

Surface Aspirating Aeration: aeration equipment floats on lagoon surface and aerates lagoon

Coarse Bubble Aeration: not as efficient as fine bubble

Fine Bubble Aeration: more efficient than coarse bubble

How Facultative Lagoon Systems Work

Fig. 4 Operation of the facultative pond (Tchobanoglous and Schroeder 1987).

Total Retention Lagoon System: Typically lined with HDPE Liner

Wastewater In + Precipitation In = Evaporation Out + Storage

- •Need wastewater flow data projected for the design life of the lagoon system
- Need evaporation data for your area
- •Do mass balance to size the lagoon system (how many acres ?)

Picuris Lagoon Improvements Design Spreadsheet Total Retention Lagoon System

PROJECT NAME LAGOON WATER BALANCE DATA - TOTAL RETENTION

.r...

- 1. Pan Evaporation used
- 2. Rainfall data from Penasco Station
- 3. Evaporation estimated by averaging the evaporation measured at Abiquiu Lake and Eagle Nest Lake

ASSUMPTIONS					
influent [BOD] (mg/L) =	220				
BOD Loading Calculations	š				
Size of 1st Lagoon Cell (acres) =	2				
BOD Load on First Cell (#/acre/day)	23				

Less than 20 lbs/ac-day is desireable, but 60-100 lbs/ac-day is possible in the Southwestern US

CALCULATED SIZING

INFLOW TO LAGOON =	25,000 gpd	=	27.6219	acre-in/month
TOTAL LAGOON SURFACE AREA =	7.33 acres	=	319,119	Square feet
AVERAGE MONTHLY APPLICATION RATE =	3.77 inches/m	onth	·	

	NEC NEC	GATIVE FLOW			DDITIONAL FLOW	,		FREEBOARD
	EVAPORATION		TOTAL	PRECIPITATION	WASTEWATER	TOTAL	VOLUME	CUMULATIVE
MONTH	(in.)	(in.)	LOSSES	(in.)	INFLOW	INFLOW	OVERFLOW	OVERFLOW
			(in)		(in)	(in)	(in)	(in)
JAN	0.00	0.00	0.00	0.58	3.77	4.35	4.35	4.35
FEB	0.00	0.00	0.00	0.55	3.77	4.32	4.32	8.67
MAR	3.03	0.00	3.03	0.82	3.77	4.59	1.56	10.23
APR	6.17	0.00	6.17	0.82	3.77	4.59	-1.58	8.65
MAY	8.81	0.00	8.81	1.19	3.77	4.96	-3.85	4.80
JUNE	9.61	0.00	9.61	0.97	3.77	4.74	-4.87	-0.07
JULY	8.80	0.00	8.80	1.43	3.77	5.20	-3.59	-3.66
AUG	7.39	0.00	7.39	1.90	3.77	5.67	-1.71	-5.38
SEPT	6.27	0.00	6.27	1.33	3.77	5.10	-1.16	-6.54
OCT	4.81	0.00	4.81	1.19	3.77	4.96	0.16	-6.39
NOV	1.57	0.00	1.57	0.89	3.77	4.66	3.10	-3.29
DEC	1.11	0.00	1.11	0.63	3.77	4.40	3.29	0.00

Pueblo of Picuris					
Wastewater Flow Projections					
# o:	f homes =	86			
Q _{an}	_{rg} (gpd) =	16500			
	per home				
((gpd) =	192			
		Projected			
	# homes	Average Daily			
	(2%	Wastewater			
Year	growth)	Flow (gpd)			
2009	86	16,500			
2010	87.7	16,830			
2011	89.5	17,167			
2012	91.3	17,510			
2013	93.1	17,860			
2014	95.0	18,217			
2015	96.8	18,582			
2016	98.8	18,953			
2017	100.8	19,332			
2018	102.8	19,719			
2019	104.8	20,113			
2020	106.9	20,516			
2021	109.1	20,926			
2022	111.3	21,345			
2023	113.5	21,771			
2024	115.7	22,207			
2025	118.1	22,651			
2026	120.4	23,104			
2027	122.8	23,566			
2028	125.3	24,037			
2029	127.8	24,518			

Aerobic & Facultative Lagoon Systems:

- •Obtain wastewater quality data (BOD, TSS, N, & P at a minimum)
- •Size 1st lagoon cell so that BOD loading is ≤ 20 mg/L (may be able to go up to 60 to 100 mg/L in Southwest where freezing doesn't occur) for Facultative Treatment; higher for Aerobic treatment (based on aeration equipment manufacturer's literature)

Configuration:

- Multiple cells for operational flexibility
- •Set inlets and outlets to maximize retention time and reduce short circuiting

Typical Design Issues and solutions

Short Circuiting

Problem:

•Decreased retention time, thus treatment

Short Circuiting

Can correct by:

- Changing piping configuration
- Installing baffles

Typical Design Issues and solutions

BOD Overloading of Primary Cell

Problems:

- •Changes cell from facultative towards anaerobic
- Caused odors

BOD Overloading of Primary Cell

Can correct by:

- Increasing size of primary cell
- Splitting influent wastewater over more cells
- Aeration; perhaps pond circulators

Split flow from 1 cell to 3 cells or combine 3 cells into 1 (example)

Typical Design Issues and solutions

Lagoon Overflows

Problems:

Creates a public health issue

Lagoon Overflows

Can correct by:

- •Increasing size of lagoon system
- •Reducing inflow to lagoon system
- Discharging

Typical Design Issues and solutions

<u>Lagoon Empty (Percolating)</u>

Problems:

•Wastewater seeping into ground with little or no treatment

•Possible groundwater contamination (nitrates, ammonia, BOD, etc.)

Lagoon Empty (Percolating)

Can correct by:

•Installing lagoon liner

Aerobic Lagoon Systems Only:

- A. Fine/Course Bubble Aeration
 - Air compressor maintenance
 - Air diffuser maintenance
 - Air piping maintenance
 - Ensure even distribution of bubbles
 - Clearing clogged diffusers
- B. Surface Aspirating Aeration
 - Mechanical equipment maintenance (based mostly on manufacturer's recommendations)

Facultative and Aerobic Lagoons:

- •Weed Control must be cut; limits aeration by cutting down wind; permit for pesticides
- Flow Measurement
- •Sludge Measurement sludge judge and row boat; pump when sludge depth is > 1/3 depth of lagoon
- Exercise transfer structure valves
- •Know how the wastewater was DESIGNED to flow through your system and ensure that it is

Discharging Lagoons:

A. Permit Requirements

- Wastewater Quality Testing (continuous sampler vs. grab samples)
- •Flow Measurement (discharge volume)
- •When does permit allow discharge (continuous vs. timed releases)
- •Disinfection?
- Discharge Monitoring Reports (DMR's)

Discharging Lagoons:

A. Typical Testing Parameters for NPDES Permits

- •BOD, TSS, P, NH₃, Fecal Coliforms
- •Others (pH, temp, DO, alkalinity, etc.)

Daily Inspections

A. Typical Permit Requirements

- Weekly inspection
- Discharge status
- Freeboard measurement
- Presence of animal burrows
- Erosion issues
- Vegetation
- Date/time of inspection
- Initials/name of inspector
- Corrective actions

EPA Self Inspection Booklets

January

Sample Requirements:

- flow measurements instantaneous
- pH samples
 tested within 15 minutes
- BOD samples
 <u>tested</u> within 48 hours &

 <u>stored</u> below 6° C
- TSS samples
 <u>tested</u> within 7 days &

 <u>stored</u> below 6° C

Sel	lf Inspe	ction: J	anuary		
Day	Leakage through berm?	Animal burrows in berm?	Excessive berm erosion?	Rooted plants in water?	Berms need mowing?
1	Y N	Y N	Y N	Y N	Y N
2	Y N	Y N	Y N	Y N	Y N
3	Y N	Y N	Y N	Y N	Y N
4	Y N	Y N	Y N	Y N	Y N
5	Y N	Y N	Y N	Y N	Y N
6	Y N	Y N	Y N	Y N	Y N
7	Y N	Y N	Y N	Y N	Y N
8	Y N	Y N	Y N	Y N	Y N
9	Y N	Y N	Y N	Y N	Y N
10	Y N	Y N	Y N	Y N	Y N
11	Y N	Y N	Y N	Y N	Y N
12	Y N	Y N	Y N	Y N	Y N
13	Y N	Y N	Y N	Y N	Y N
14	Y N	Y N	Y N	Y N	Y N
15	Y N	Y N	Y N	Y N	Y N
16	Y N	Y N	Y N	Y N	Y N
17	Y N	Y N	Y N	Y N	Y N
18	Y N	Y N	Y N	Y N	Y N
19	Y N	Y N	Y N	Y N	Y N
20	Y N	Y N	Y N	Y N	Y N
21	Y N	Y N	Y N	Y N	Y N
22	Y N	Y N	Y N	Y N	Y N
23	Y N	Y N	Y N	Y N	Y N
24	Y N	Y N	Y N	Y N	Y N
25	Y N	Y N	Y N	Y N	Y N

References

- EPA
- Internet Sources
- IHS SFC Handbook II: Project Planning & Engineering

Questions?

http://www.dsfc.ihs.gov

By: Christen P. Glime, P.E., District Engineer Santa Fe District Office, AAO, HIS 505-946-9570